top of page

Group

Public·16 members

Victor Cheng Look Over My Shoulder Torrent 73l


a lot of helpful comments already! I just want to emphasize one central point that candidates unfortunately nearly never understand when using Victor Cheng or Case in Point: these sources provide you with a very good basic toolbox in terms of which areas to look into for certain types of problems. However, they are very poor regarding HOW TO APPROACH a case and HOW TO DRAFT A ROADMAP for solving the case. This needs to be rooted in rigorous logic, and unfortunately the "framework learning philosophy" brought forward by, e.g., Case in Point, is the very reason why an overwhelming majority of candidates will not get an offer.




Victor Cheng Look Over My Shoulder Torrent 73l


Download: https://www.google.com/url?q=https%3A%2F%2Fbytlly.com%2F2tPusV&sa=D&sntz=1&usg=AOvVaw0GvUVQ8ISZ2YW9-mGxYDvM



The Southern torrent salamander (Rhyacotriton variegatus) was recently found not warranted for listing under the US Endangered Species Act due to lack of information regarding population fragmentation and gene flow. Found in small-order streams associated with late-successional coniferous forests of the US Pacific Northwest, threats to their persistence include disturbance related to timber harvest activities. We conducted a study of genetic diversity throughout this species' range to 1) identify major phylogenetic lineages and phylogeographic barriers and 2) elucidate regional patterns of population genetic and spatial phylogeographic structure. Cytochrome b sequence variation was examined for 189 individuals from 72 localities. We identified 3 major lineages corresponding to nonoverlapping geographic regions: a northern California clade, a central Oregon clade, and a northern Oregon clade. The Yaquina River may be a phylogeographic barrier between the northern Oregon and central Oregon clades, whereas the Smith River in northern California appears to correspond to the discontinuity between the central Oregon and northern California clades. Spatial analyses of genetic variation within regions encompassing major clades indicated that the extent of genetic structure is comparable among regions. We discuss our results in the context of conservation efforts for Southern torrent salamanders.


The Southern torrent salamander (Rhyacotriton variegatus) was recently found not warranted for listing under the US Endangered Species Act due to lack of information regarding population fragmentation and gene flow. Found in small-order streams associated with late-successional coniferous forests of the US Pacific Northwest, threats to their persistence include disturbance related to timber harvest activities. We conducted a study of genetic diversity throughout this species' range to 1) identify major phylogenetic lineages and phylogeographic barriers and 2) elucidate regional patterns of population genetic and spatial phylogeographic structure. Cytochrome b sequence variation was examined for 189 individuals from 72 localities. We identified 3 major lineages corresponding to nonoverlapping geographic regions: a northern California clade, a central Oregon clade, and a northern Oregon clade. The Yaquina River may be a phylogeographic barrier between the northern Oregon and central Oregon clades, whereas the Smith River in northern California appears to correspond to the discontinuity between the central Oregon and northern California clades. Spatial analyses of genetic variation within regions encompassing major clades indicated that the extent of genetic structure is comparable among regions. We discuss our results in the context of conservation efforts for Southern torrent salamanders. ?? The American Genetic Association. 2006. All rights reserved.


China's sloping fields have the problems of low production and serious soil erosion, and mountain torrent disasters will bring more serious soil and water loss to traditional extensive exploitation of sloping field resources. In this paper, China's sloping fields were classified into three grades, such as slightly steep, steep and very steep grade. According to the geological hazards prevention and control regulation, the historical data of China's mountain torrent disasters were spatially interpolated and divided into five classes, such as extremely low, low, middle, high and extremely high level. And the risk level map of mountain torrents was finished in ArcGIS. By using overlaying analysis on sloping fields and risk level map, the potential risk regionalization map of sloping fields in various slope grades was obtained finally. The results shows that the very steep and steep sloping fields are mainly distributed in the first or second stage terraces in China. With the increase of hazard risk level, the area of sloping fields decreases rapidly and the sloping fields in extremely low and low risk levels of mountain torrents reach 98.9%. With the increase of slope grade, the area of sloping fields in various risk levels also declines sharply. The sloping fields take up approximately 60 65% and 26 30% in slightly steep and steep grade areas separately at different risk level. The risk regionalization map can provide effective information for returning farmland to forests or grassland and reducing water and soil erosion of sloping fields in the future.


Rating curves contain uncertainties, especially in their upper range of higher discharge. This is due to more uncertainties in the measurements and also the typically lower number of measurements of high discharge events. However, it is the upper part of a rating curve that is of interest if it comes to dimensioning protection measures against floods and flash floods. For small municipalities who plan mitigation measures like a dam for protection against flash floods of small mountain torrent a rating curve as accurate as possible can be of great interest. It helps to reduce costs that can be caused by both under- and overdimensioning of a protective structure. We therefore invented a mobile discharge measurement station that is set up to construct a rating curve for small turbulent mountain torrents. It operates with salt dilution method and works in its current setup up to about 10 m3/s. The salt is injected automatically to the torrent when an event of desired magnitude takes place. Further downstream a conductivity measuring sensor records the change in salt concentration of the stream water. This mechanism is guided by automatic continuous observation of radar quantitative precipitation estimates (QPE) and a water pressure sensor. Measurements at a first test site gave promising results. The system does event measurements independent of the time of day and day of the week. The measuring equipment at the field site is only activated in case of an event. Therefore it has a low power consumption and can be run by only two solar panels.


Oviposition sites and reproductive ecology of the southern-torrent salamander (Rhyacotriton variegatus) remain poorly documented. This species oviposits in cryptic locations making the detection of eggs difficult. Here we describe the discovery of 1 clutch of eggs of R. variegatus from northern California, which further expands our...


Dynamic morphological processes in mountain torrents do not only attract the attention of many contemporary researchers, but are also a relevant issue for the design of flood protection measures in the downstream sections where dwellers may be threatened by the important potential of flows with high concentration of sediments. Events which have a morphodynamic effect are simulated at the Laboratory of Hydraulic Constructions (LCH) in order to optimize the design of a flood protection measure, notably open check dams. Different scenarios with a fix bed consisting of boulders as well as mobile beds are studied and the influence of flow constrictions, i.e. distinct geometric configurations of open check dams are analysed. Three varying water pumped discharges in the order of 5 to 20 l/s are tested with progressively increasing solid discharges of 1, 3 and 6 % of the liquid discharge according to the transport capacity. The moistened sediments are introduced via a system of conveyor belts and are then mixed with the liquid discharge in an about 3 m long rough trapezoidal channel with a base width of 24 cm. The mean diameter Dm of the injected sediments is 0.86 cm and the dimensionless grain size distribution is in line with a normalized shape derived from over 60 streams in the Alps. A wide range of frequent floods in morphologically diverging types of mountain torrents is covered, in particular regarding the sediment availability in the catchment area and along the river. A basic assumption here is considering that the frequent floods are floods with return periods between 1 to 5 years and are the most important process in terms of amounts of sediment transport. This may be arguable for some mountain torrents and landscape effective processes which are driven by floods with return periods of more than several decades. In order to identify benchmarks for hydraulic parameters which lead to the obstruction of flow restrictions at mountain torrents, the water depth is


Torrential check dams have been built in French public forests since the 19th century, applying the Restoration and conservation of Mountainous Areas (RTM) laws (1860, 1864, 1882). The RTM department of the National Forestry Office (ONF) helps the government to decide on protective actions to implement within these areas. While more than 100 000 structures were registered in 1964, more than 14 000 check dams are currently registered and maintained within approximatively 380 000 ha of RTM public forests. The RTM department officers thus have a long experience in using check dams for soil restoration, but also in implementing other kinds of torrential protective structures such as sediment traps, embankments, bank protection, and so forth. As a part of the ONF, they are also experienced in forestry engineering. Nevertheless, some limits in torrent control management have been highlighted: - as existing protective structures are ageing, their effectiveness to protect elements at risk must be assessed but it is a difficult task ; - as available budget for maintenance is continuously decreasing, priorities have to be made but decisions are difficult : what are the existing check dams functions? what is their expected effect on torrential hazard? is maintenance cost too important given this expected effect to protect elements at risk? Given these questions, a new policy has been engaged by the RTM department since 2012. A technical overview at the torrential watershed scale is now needed to help better maintenance decisions: it has been called a Risk Watershed Analysis (Etude de Bassin de Risque in French, EBR) and is funded by the government. Its objectives are to: - recall initial objectives of protective structures : therefore, a detailed archive analysis is made ; - describe current elements at risk to protect ; - describe natural hazards at the torrential watershed scale and their evolution since protective structures implementation ; - describe civil engineering 350c69d7ab


About

Welcome to the group! You can connect with other members, ge...
bottom of page